Linear equations with the Euler totient function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the image of Euler’s totient function

Euler's totient function φ is the function defined on the positive natural numbers N * in the following way: if n ∈ N * , then φ(n) is the cardinal of the set {x ∈ N * : 1 ≤ x ≤ n, (x, n) = 1}, where (x, n) is the pgcd of x and n. Thus φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, and so on. The principle aim of this article is to study certain aspects of the image of the function φ. 1 Elementary pro...

متن کامل

Sets of Monotonicity for Euler’s Totient Function

We study subsets of [1, x] on which the Euler φ-function is monotone (nondecreasing or nonincreasing). For example, we show that for any > 0, every such subset has size < x, once x > x0( ). This confirms a conjecture of the second author.

متن کامل

Some Dominating Sets of Lexicographic Product Graphs of Euler Totient Cayley Graphs with Arithmetic Graphs

The theory of domination in graphs is an emerging area of research in graph theory today. It has been studied extensively and finds applications to various branches of Science & Technology.Products are often viewed as a convenient language with which one can describe structures, but they are increasingly being applied in more substantial ways. In this paper, we consider lexicographic product gr...

متن کامل

Identifying Euler equations estimated by non-linear IV/GMM

In this article, the identi ̄cation of instrumental variables and generalised method of moment (GMM) estimators is discussed. It is common that representations of such models are derived from the solution to linear quadratic optimisation problems. Here, it is shown that even though the rank condition on the Jacobian and the instrument set is valid, that the transversality condition may not be sa...

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2007

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa128-2-4